Abstract

Flexible solid-state supercapacitors featuring lightweight and large capacitance have many attractive applications in portable and wearable electronics. Nitrogen-doped graphene is a promising electrodes material due to the extraordinary properties of graphene. This study demonstrates a magnetically enhanced dielectric barrier discharge that has the potential to efficiently exfoliate polyaniline-modified graphene at low input power. The plasma exfoliated N-doped graphene is subsequently used to fabricate flexible solid-state supercapacitors, which exhibit large specific capacitance of 45 mF/cm2 at 0.2 A cm−2 charging rate, ~100% capacitance retention after 1000 charge/discharge cycles at different current densities, and outstanding mechanical flexibility. The magnetically enhanced plasma exfoliation of graphite oxide offers a potentially cost-effective approach to producing high-quality carbon nanomaterials for energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.