Abstract

Activated carbon derived from peat-based biomass was sulfurized and magnetized forming magnetically-engineered sulfurized peat-based activated carbon (MEPBAC) and used for adsorption of caffeine (CFN) and sulfamethoxazole (SMX) from aqueous media. Modification increased the surface area (724 m2/g) and introduced sulphur-groups and Fe-based nano-structures in MEPBAC. Sulphur-groups enhanced adsorption efficiency, whereas Fe-based nano-structures facilitated easy magnetic separation of MEPBAC after intended use leading to high reusability with consistent removal efficiency (∼95 %). Response surface methodology was employed for design of experiments and process optimization. The results revealed that the maximum removal (SMX 94 %; CFN 97 %) could be achieved at an adsorbent dose of 1.4 and 1.6 g/L, respectively (pH 11, 311 K). Adsorption kinetics was best explained by a pseudo-second-order kinetic model. Adsorption data of SMX was fitted better to Langmuir (linear) and Freundlich (non-linear) isotherms, whereas that of CFN was fitted well with Freundlich (linear) and Langmuir (non-linear) isotherms (R2 ≥ 0.99).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.