Abstract
Syntheses of Cu-, Ag-, and Ag-Cu-Co3O4 nanomaterials are of interest for a wide range of applications including electrochemistry, thermal catalysis, energy storage, and electronics. However, Co3O4-based nanomaterials have not been explored for surface-enhanced Raman scattering (SERS). Here, we present Cu-, Ag-, and Ag-Cu-Co3O4 nanomaterials of a hierarchical flower shape comprising two separate phases: a pure Cu or Ag core and multiple Co3O4 branches, in which the optical properties of the core and the magnetic properties of the branches are integrated. In addition, a series of nonmagnetic Cu-dominant Cu-Co-O polyhedra without Co3O4 branches were derived from Cu-Co3O4. The polyhedron morphology can be controlled and transformed among cubes, cuboctahedra, and truncated octahedra by tuning the amounts of ligands and additives to vary the potential energy and growth rate of specific crystal facets. The flowerlike Cu-, Ag-, and Ag-Cu-Co3O4 were characterized for SERS enhancement, showing that Ag-Cu-Co3O4 does not enhance SERS from 4-mercaptobenzoic acid (4-MBA) but dramatically and selectively does so for adsorbed rhodamine 6G. Obviously, the synergy of Ag and Cu within the Co3O4 flower constraint promotes the SERS activity. This type of spinel with not only excellent SERS activity but also ferromagnetism could be of great potential in tandem SERS detection/magnetic separation and related applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.