Abstract

Synthesis and magnetic characterization of a family of cobalt-dioxolene complexes [(Me2TPA)Co(36-DBCat)] (1), [(Me2TPA)Co(36-DBCat)](PF6) (2) and [(Me2TPA)Co(diox-(OMe)3)](BPh4) (3) (Me2TPA = bis(6-methyl-2-pyridyl)methyl-(2-pyridylmethyl)amine; 36-DBCat = dianion of 3,6-di-tert-butylcatechol; diox-(OMe)3 - 2,5-di-tert-butyl-3,3,4-trimethoxy-6-oxocyclohexa-1,4-dienolate) is reported. The neutral complex 1 is found to form hexa- (CoO2N4, 1a) and pentacoordinated (CoO2N3, 1b) isomers. Variable temperature single crystal X-ray diffraction analysis of 1a and 1b clearly indicates the presence of the high-spin divalent metal ion and the dianionic catecholate form of the dioxolene ligand. Oxidation of 1 by ferrocenium hexafluorophosphate results in the formation of the ionic octahedral complex 2, demonstrating thermally induced valence-tautomeric transition (ls-CoIII-36-DBCat ⇄ hs-CoII-36-DBSQ) in the solid state with T1/2 = 175 K (36-DBSQ = radical-anionic semiquinonate form of the redox-ligand). In contrast, aerial oxidation of 1 is accompanied by changes in the structure of dioxolene resulting in oxocyclohexadienolate ligand and the formation of an ionic complex of high-spin divalent cobalt (3). Compounds 1a, 1b, and 3 are found to demonstrate a field-induced single-ion magnet behavior. The analysis of the electronic structures of 1, 2 and 3 with the aid of DFT and SA-CASSCF/NEVPT2 calculations is also given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.