Abstract

Abstract We consider an accretion flow model originally proposed by Bisnovatyi-Kogan and Ruzmaikin (1974), which has been confirmed in recent 3D MHD simulations. In the model, the accreting gas drags in a strong poloidal magnetic field to the center such that the accumulated field disrupts the axisymmetric accretion flow at a relatively large radius. Inside the disruption radius, the gas accretes as discrete blobs or streams with a velocity much less than the free-fall velocity. Almost the entire rest mass energy of the gas is released as heat, radiation and mechanical/magnetic energy. Even for a non-rotating black hole, the efficiency of converting mass to energy is of order 50% or higher. The model is thus a practical analog of an idealized engine proposed by Geroch and Bekenstein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call