Abstract

The advancement in smart devices and soft robotics necessitates the use of multiresponsive soft actuators with high actuation stroke and stable reversibility for their use in real-world applications. Here, this work reports a magnetically and electrically dual responsive soft actuator based on neodymium and iron bimetallic organic frameworks (NdFeMOFs@700). The ferromagnetic NdFeMOFs@700 exhibits a porous carbon structure with excellent magnetization saturation (166.96 emu g-1 ) which allows its application to a dual functional material in both magnetoactive and electro-ionic actuations. The electro-ionic soft actuator, which is fabricated using NdFeMOFs@700 and PEDOT-PSS, demonstrates 4.5 times higher ionic charge storage capacity (68.21 mF cm-2 ) and has excellent cycle stability compared with the PEDOT-PSS based actuator. Under a low sinusoidal input voltage of 1V, the dual-responsive actuator displays bending displacement of 15.46mm and also generates deflection of 10mm at 50 mT. Present results show that the ferromagnetic bimetallic organic frameworks can open a new way to make dual responsive soft actuators due to the hierarchically porous structures with its high redox activity, superior magnetic properties, and larger electrochemical capacitance. With the NdFeMOFs@700 based soft actuators, walking movement of a starfish robot is demonstrated by applying both the magnetic and electric fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call