Abstract

The influence of longitudinal magnetic fields on the nanomechanical sensing behavior of single-walled carbon nanotubes (SWCNTs) is of interest. To this end, a nonlocal mathematical model is proposed to study alteration of the fundamental flexural frequency of a magnetically affected SWCNT due to an arbitrarily added nanoparticle. The explicit expressions for the frequency shift of magnetically affected cantilevered and bridged SWCNTs due to the addition of a nanoparticle at the tip and midspan points are obtained. The predicted results reveal that the mechanical sensing of SWCNTs is generally enhanced by application of the longitudinal magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.