Abstract
We report a magnetically actuated peanut-shaped hematite colloid motor that can not only move in a rolling or wobbling mode in fluids but also perform single cell manipulation and patterning in a noncontact way. The peanut motor in a rolling mode can reach a maximal velocity of 10.6 μm s-1 under a rotating magnetic field of 130 Hz and 6.3 mT and achieve a more precisely controllable motion in predefined tracks. While in a wobbling mode, the motor reaches a maximal velocity of 14.5 μm s-1 under a conical rotating magnetic field of 80 Hz and 6.3 mT and can climb over steep slopes to adapt the motor for more complex environments. The fluid flow simulation results reveal that the difference between two movement modes mostly comes from the distribution discrepancy of the flow fields near the motors. Through the integration of the rolling and wobbling movement, these peanut motors can autonomously transport and release cells to a predefined site and thus form complex cell patterns without a physical contact. Such magnetically actuated peanut colloid motors afford a biofriendly technique for manipulation and patterning of cells, cell measurements, and intracellular communication investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.