Abstract

Inspired by the tropical fish neon tetra, we report a mechanism to achieve dynamic iridescence that can be magnetically tuned. This approach is based on the tilting of periodic photonic nanostructures, as opposed to the more common strain-induced color tuning. In this method, a periodic array of magnetic nanopillars serves as a template to guide the assembly of iron oxide nanoparticles when magnetized in a liquid environment. The periodic local fields induced by the magnetic template anchor the assembled particle columns, allowing the structure to tilt about the base when the angle of the applied field is changed. This effect emulates a microscopic "Venetian blind" and results in dynamic optical properties through structural coloration that is tunable in real time. The fabricated prototype demonstrates tunable reflectance spectra with peak wavelength shift from 528 to 720 nm. The magnetic actuation mechanism is reversible and has a fast response time around 0.3 s. This structure can be implemented on an arbitrary surface as dynamic camouflage, iridescent display, and tunable photonic elements, as well as in other applications such as active fluidic devices and particle manipulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.