Abstract
Nowadays, the manipulation of the chiral light field is highly desired to characterize chiral substances more effectively, since the chiral responses of most molecules are generally weak. Terahertz (THz) waves are related to the vibration-rotational energy levels of chiral molecules, so it is significant to actively control and enhance the chirality of THz field. Here, we propose a metal/magneto-optical (MO) hybrid Pancharatnam-Berry (PB) phase structure, which can serve as tunable broadband half-wave plate and control the conversion of THz chiral states with the highest efficiency of over 80%. Based on this active PB element, MO PB metasurfaces are proposed to manipulate THz chiral states as different behaviors: beam deflector and scanning, Bessel beam, and vortex beam. Due to the magnetic-tunablibity, these proposed MO PB metasurfaces can be turned from an "OFF" to "ON" state by changing the external magnetic field. We further investigate the near-field optical chirality and the chirality enhancement factors in far field of the chiral Bessel beam and vortex beam, achieving the superchiral field with the highest chiral enhancement factor of 40 for 0th Bessel beam. These active, high efficiency and broadband chiral PB metasurfaces have promising applications for manipulation the THz chiral light and chiroptical spectroscopic techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.