Abstract

Magnetical asymmetric effect (MAE) in a geometrically and electrically symmetric capacitively coupled plasma is investigated by a one‐dimensional implicit Particle‐in‐cell/Monte Carlo collision simulation. We applied four types of asymmetric magnetic field parallel to the electrodes and the discharge operates at a single‐frequency rf source of 13.56 MHz and 150 V in argon with the pressure of 30 mTorr. The simulation results show that the asymmetric magnetic field can generate a significant dc self‐bias, which is the result of a particle‐flux balance applied to each electrode. The asymmetric magnetic field with variable gradient can produce controllable asymmetry in the plasma density and ion flux profiles to each electrode, together with a significant change on IEDF shape and width on the powered electrode. It has demonstrated that the MAE is a promising approach to increase the ion flux and still make the ion energy be adjusted in a certain range, that is, independent control of ion flux and energy to the electrode. The results suggest that the MAE can be an effective means to control the plasma properties as an augmentation to conventional measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.