Abstract

In this paper, we consider the Einstein–Gauss–Bonnet gravity in the presence of power Maxwell invariant field and present a class of rotating magnetic solutions. These solutions are nonsingular and horizonless, and satisfy the so-called flare-out condition at r = r+ and may be interpreted as traversable wormhole near r = r+. In order to have a vanishing electromagnetic field at spatial infinity, we restrict the nonlinearity parameter to s > 1/2. Investigation of the energy conditions shows that these solutions satisfy the null, week, and strong energy conditions simultaneously for s > 1/2, which means that there is no exotic matter near the throat. We also calculate the conserved quantities of the wormhole such as mass, angular momentum, and electric charge density, and show that the electric charge depends on the rotation parameters and the static wormhole does not have a net electric charge density. In addition, we show that for s = (n + 1)/4, the energy–momentum tensor is traceless and the solutions are conformally invariant, in which the expression of the Maxwell field does not depend on the dimensions and its value coincides with the Reissner–Nordström solution in four dimensions. Finally, we produce higher dimensional BTZ-like wormhole solutions for s = n/2, in which in this case the electromagnetic field Fψr∝r−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.