Abstract

<p>A major barrier to the clinical utilization of microfluidically generated water-in-oil droplets is the cumbersome washing steps required to remove the non-biocompatible organic oil phase from the droplets. In this paper, we report an on-chip magnetic water-in-water droplet generation and manipulation platform using a biocompatible aqueous two-phase system of a polyethylene glycol–polypropylene glycol–polyethylene glycol triblock copolymer (PEG–PPG–PEG) and dextran (DEX), eliminating the need for subsequent washing steps. By careful selection of a ferrofluid that shows an affinity toward the DEX phase (the dispersed phase in our microfluidic device), we generate magnetic DEX droplets in a non-magnetic continuous phase of PEG–PPG–PEG. We apply an external magnetic field to manipulate the droplets and sort them into different outlets. We also perform scaling analysis to model the droplet deflection and find that the experimental data show good agreement with the model. We expect that this type of all-biocompatible magnetic droplet microfluidic system will find utility in biomedical applications, such as long-term single cell analysis. In addition, the model can be used for designing experimental parameters to achieve a desired droplet trajectory.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call