Abstract

An approach is presented that allows quantifying the three dimensional magnetization pattern of a magnetic nanoobject from measured two dimensional Magnetic Force Microscopy (MFM) data. This is based on a MFM deconvolution approach, which quantitatively determines the effective surface charges, on a micromagnetic calculation of the total magnetic charges at and below the sample surface, and on a projection of the lower lying charges onto the sample surface for a comparison of the such obtained effective surface charges with the experimentally determined ones. Thus, by making use of the depth sensitivity of MFM and by applying a quantitative contrast analysis, we are able to reconstruct the inhomogeneous magnetization state at the end of individual cylindrical Fe52Co48 nanowires arranged in a triangular array. As a result, we prove the existence of a magnetic vortex state at their ends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call