Abstract

This article presents a magnetically actuated two-way, three-position (+, 0, −), paper-based microfluidic valve that includes a neutral position (0)—the first of its kind. The system is highly robust, customizable, and fully automated. The advent of a neutral position and the ability to precisely control switching frequencies establish a new platform for highly controlled fluid flows in paper-based wicking microfluidic devices. The potential utility of these valves is demonstrated in automated, programmed, patterning of dyed liquids in a wicking device akin to a colorimetric assay but with a programmed fluid/reagent delivery. These valves are fabricated using facile methods and thus remain cost-effective for adoption into affordable point-of-care/bioanalytical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call