Abstract

Conducting and magnetic properties of a material often change in some confined geometries. However, a situation where a non-magnetic semiconductor becomes both metallic and magnetic at the surface is quite rare, and to the best of our knowledge has never been observed in experiment. In this work, we employ first-principles electronic structure theory to predict that such a peculiar magnetic state emerges in a family of quaternary Heusler compounds. We investigate magnetic and electronic properties of CoCrTiP, FeMnTiP and CoMnVAl. For the latter material, we also analyse the magnetic exchange interactions and use them for parametrizing an effective spin Hamiltonian. According to our results, magnetism in this material should persist at temperatures at least as high as 155 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.