Abstract

Unidirectional scattering, crucial for manipulating light at the nanoscale, has wide-ranging applications from optical manipulation to sensing. While traditionally achieved through interactions between electric multipoles or between electric and magnetic multipoles, reports on unidirectional scattering driven purely by magnetic multipoles are limited. In this study, we undertake a theoretical exploration of transverse unidirectional scattering induced by magnetic multipoles, employing tightly focused azimuthally polarized beams (APBs) in interaction with a silicon nanodimer comprising two non-concentric nanorings. Through numerical simulations and theoretical analysis, we validate the transverse unidirectional scattering, predominantly governed by magnetic dipolar and quadrupolar resonances. Moreover, the directionality of this unidirectional scattering shows a strong correlation with the longitudinal displacement of the nanodimer within a specific range, showcasing its potential for longitudinal displacement sensing. Our study advances optical scattering control in nanostructures and guides the design of on-chip longitudinal displacement sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.