Abstract

A novel magnetic thermosensitive polymer composite carrier with target spacing was developed. In this strategy, thermosensitive polymer grafted on magnetic Fe3O4 for enhancing immobilized penicillin G acylase (PGA) performance and introduce immobilized target spacing into magnetic carriers for the first time. Fe3O4 nanoparticles were synthesized by a reverse microemulsion method. The modifier used was the silane coupling agent γ-methylacryloxypropyl trimethoxysilane (KH570) and then reacting with a reversible-adaptive fragmentation chain transfer (RAFT) reagent, 2-cyano-2-propyldodecyl trithiocarbonate (CPDTC). The thermo-sensitive nanoparticle-composite carrier of Fe3O4-grafted-poly N, N-diethyl acrylamide-block-poly β-Hydroxyethyl methacrylate-block-random copolymer of glycidyl methacrylate and methyl methacrylate (Fe3O4-g-PDEA-b-PHEMA-b-P(MMA-co-GMA)) were synthesized by RAFT polymerization technique that used N, N-diethyl acrylamide (DEA), β-Hydroxyethyl methacrylate (HEMA), Glycidyl methacrylate (GMA) and Methyl methacrylate (MMA) as monomer, then which were employed as functional carriers for the immobilization of PGA. Within the carrier, the epoxy group of GMA segment was a target immobilization site for PGA and the introduction of MMA reflected the target space of immobilized PGA to improve catalytic activity and catalytic activity recovery rate of the immobilized PGA. Characterizations demonstrated that the triblock copolymers grafted Fe3O4 nanoparticles were successfully fabricated by the structure design. Besides, under these circumstances the enzyme activity (EA), enzyme loading capacity (ELC) and catalytic activity recovery ration (CAR) reached 31235 U/g, 128.39 mg/g and 93.32 %, respectively. The catalytic activity of immobilized PGA maintained 87.4 % of initial value and the recovery ratio (R) of immobilized PGA reached 96.22 % after recycling 12 times. Furthermore, the immobilized PGA exhibited advantages of low temperature homogeneous catalysis and magnetic separation, which indicated broad application prospects in the biocatalysts’ field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.