Abstract

Using the magnetic symmetry structure of non-Abelian gauge theories, we analyze the flux tube formulation and its implications on the hadronic Regge trajectories and the confinement of color isocharges in magnetically condensed (with as well as without the electric excitations) QCD vacuum. Starting with the fiber bundle structure of QCD, the dual potentials are used to construct the QCD Lagrangian which has been shown to develop a unique flux tube configuration in its dynamically broken phase. The vector mass mode of the condensed vacuum has been shown to play a leading role in flux tube energy and other confinement parameters. Using the flux tube energy and the angular momentum, the Regge trajectories for hadrons have been obtained and the linear confining properties of dual QCD have been established. The dyonic flux tube structure of the condensed QCD vacuum has been obtained by inducing the electric excitation of QCD monopoles and the confining nature along with the linearity of Regge trajectories in dyonically condensed QCD vacuum are shown to remain intact. Implications of the modification in Regge slope parameter, on improving the confining properties of dual QCD vacuum are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call