Abstract

ErCo2 represents a typical example of magnetism of itinerant electron systems and metamagnetic processes and has been the subject of extensive research. We present here the first study of radio-frequency transverse susceptibility (TS) of bulk ErCo2 using a self-resonant tunnel-diode oscillator technique. TS measurements reveal the collective magnetic switching of the Er moments at temperatures below the ferrimagnetic transition temperature, Tc∼32 K, and the existence of Co nanoclusters with short-range correlations at Tc<T<Tf (Tf denoted as the flipping temperature). The difference in the magnetic configuration between the ferrimagnetic, parimagnetic, and paramagnetic states, as well as the change from the paramagnetic to parimagnetic regime upon varying dc magnetic fields are also probed by TS experiments. These findings are discussed in the context of our previous investigations using other different techniques which provide further insights into the magnetism and the so-called parimagnetism phenomenon in ErCo2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call