Abstract

The interest in new techniques to support digital soil mapping (DSM) is increasing. Numerous studies pointed out that the measure of magnetic susceptibility (MS) can be extremely useful in the identification of properties related with factors and processes of soil formation, applied to soil mapping. This study addressed the effectiveness of magnetic soil susceptibility to identify and facilitate the distinction of different pedogenic environments of a representative hillslope in the highland Planalto Médio in the state of Rio Grande do Sul (RS), Brazil. In a 350-ha area in the municipality of Santo Augusto, RS, a representative transect was selected, trenches opened for soil characterization and 29 grid points marked at regular distances of 50 m, where soil samples were collected (layers 0.00-0.05, 0.05-0.15, 0.15-0.30, and 0.30-0.60 m) to analyze soil properties. Data from the transect samples were subjected to descriptive statistics. Limits of the pedogenetic environments along the slope were identified by the Split Moving Window (SMW) Boundary Analysis. The combined use of soil magnetic susceptibility and the SMW technique was effective in identifying different pedogenetic environments in the study area.

Highlights

  • Magnetic susceptibility (MS) is a measure that indicates to which degree a material is magnetizable, and is directly related to the compounds of this material (Dearing, 1999)

  • This study addressed the effectiveness of magnetic soil susceptibility to identify and facilitate the distinction of different pedogenic environments of a representative hillslope in the highland Planalto Médio in the state of Rio Grande do Sul (RS), Brazil

  • Studies on the magnetic variability of Oxisols at locations with a total iron content between 4 and 13 % associated the variation in MS to magnetite derived from the source material and to ferromagnetic maghemite and ferrihydrite formed in different pedogenetic environments (Camargo et al, 2014)

Read more

Summary

INTRODUCTION

Magnetic susceptibility (MS) is a measure that indicates to which degree a material is magnetizable, and is directly related to the compounds of this material (Dearing, 1999). Studies on the magnetic variability of Oxisols at locations with a total iron content between 4 and 13 % associated the variation in MS to magnetite derived from the source material and to ferromagnetic maghemite and ferrihydrite formed in different pedogenetic environments (Camargo et al, 2014) Along this same line, Marques Jr. et al (2014) analyzed a sandy Haplustalf with low total iron content (

MATERIALS AND METHODS
RESULTS AND DISCUSSION
CONCLUSIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.