Abstract

The relationships among magnetic susceptibility anisotropy, finite strain, and progressive deformation have been studied in Permian red shales and slates of the Maritime Alps (southeastern France). These rocks contain deformed reduction spots which serve as finite strain indicators. The magnetic fabric of undeformed regions is modified during deformation to yield characteristic magnetic susceptibility anisotropy patterns and a magnetic equivalent of the deformation path derived from strain measurements. The magnetic fabric changes progressively from oblate to prolate, and back to oblate as deformation increases. The quantitative relationships between natural strain and magnetic anisotropy in these rocks have been determined. They differ between the less and more deformed areas, perhaps due to a change in deformation mechanism accompanying an increase in metamorphism. The relationships provide a rapid means of strain determination using magnetic measurements but their variation emphasizes the need for local structural control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.