Abstract

The extensive use of per- and polyfluoroalkyl substances (PFAS) in many industrial and consumer contexts, along with their persistent nature and possible health hazards, has led to their recognition as a prevalent environmental issue. While various PFAS removal methods exist, adsorption remains a promising, cost-effective approach. This study evaluated the PFAS adsorption performance of a surfactant-modified clay by comparing it with commercial clay-based adsorbents. Furthermore, the impact of environmental factors, including pH, ionic strength, and natural organic matter, on PFAS adsorption by the modified clay (MC) was evaluated. After proving that the MC was regenerable and reusable, magnetic modified clay (MMC) was synthesized, characterized, and tested for removing a wide range of PFAS in pure water and snowmelt. The MMC was found to have similar adsorption performance as the MC and was able to remove > 90% of the PFAS spiked to the snowmelt. The superior and much better performance of the MMC than powdered activated carbon points to its potential use in removing PFAS from real water matrices at an industrial scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call