Abstract

Recent experiment reported the self-passivated electride Hf2S with excellent stability and continuous electrocatalytic ability [S. H. Kang et al., Sci. Adv. 6, eaba7416 (2020)]. Starting from its 2H-type layered structure, we have studied the electronic, magnetic, and transport properties of the electride Hf2S in the monolayer and multilayer forms by combining first-principles electronic structure calculations and Kubo formula approach. Our calculations indicate that these thin films of Hf2S electride are both dynamically and thermodynamically stable. Astonishingly, the calculations further show that the outmost Hf atoms and the surface electron gas of the Hf2S multilayers are spin polarized, while the inner Hf atoms and the electron gas in the interlayer regions remain nonmagnetic. Due to the magnetic surface, the multilayer Hf2S exhibits many unusual transport properties such as the surface anomalous Hall effect and the electric-field-induced layer Hall effect. Our theoretical predictions on Hf2S call for future experimental verification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.