Abstract

Hysteresis measurements on three shergottite and two nakhlite meteorites indicate single domain grain size behavior for the highly shocked Shergotty, Zagami, and EETA 79001 meteorites, with more multidomain-like behavior for the unshocked Nakhla and Governador Valadares meteorites. High viscosity and initial susceptibility for Antarctic shergottite ALHA 77005 indicate the presence of superparamagnetic grains in this specimen. Thermomagnetic curves likewise reveal a range of oxidation states for the high ulvospinel titanomagnetite grains which dominate the magnetic properties of these first five meteorites. Thermomagnetic analysis indicate Shergotty and Zagami as the least initially oxidized, while EETA 79001 appears to be the most oxidized. Cooling of the meteorite samples from high temperature in air results in a substantial increase in magnetization due to the production of magnetite through oxidation exsolution of titanomagnetite. However, vacuum heating substantially suppresses this process, and in the case of EETA 79001 and Nakhla, results in a rehomogenization of the titanomagnetite grains.Remanence measurements on several subsamples of Shergotty and Zagami meteorites reveal a large variation in intensity that does not seem related to the abundance of remanence carriers. The other meteorites carry only weak remanence, suggesting weak magnetizing fields as the source of their magnetic signal. A paleointensity experiment on a weakly magnetized subsample of Shergotty reveals a low temperature component of magnetization acquired in a field of 2,000 gammas. Also present was a high temperature component reflecting a paleo-field strength of between 250 and 1,000 gammas, depending on the nature and degree of alteration that the sample may have undergone with heating. This is consistent with an earlier paleointensity estimate of 1,000 gammas for ALHA 77005. The weak field environment that these meteorites seem to reflect is consistent with either a Martian or asteroidal body origin, but inconsistent with a terrestrial origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.