Abstract

Neutron diffraction measurements were performed on the iron borate DyFe3(BO3)4 to investigate details of the crystallographic structure, the low temperature magnetic structure and its magnetic properties. DyFe3(BO3)4 adopts at room temperature the P3121 symmetry and becomes antiferromagnetic below TN = 39 K. Both, the rare earth and the iron sublattice, follow the same magnetic propagation vector τ = [0, 0, ½] which leads to a doubling of the crystallographic unit cell in the c-direction. The easy axis anisotropy of the rare earth determines the moment orientation to be mainly along c. No spin reorientation is found between TN and 1.5 K, however, a small anomaly in the thermal dependence of the unit cell a-parameter is found at about 27 K which could be connected to repopulation of low lying Kramers doublets of Dy3+. The magnetic moment value of the Fe-moment is at 1.5 K with μFe = 4.5 μB only slightly smaller than expected for an S = 5/2 ion while the Dy moment is strongly reduced and amounts only to μDy = 6.4 μB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.