Abstract
We report on the high-resolution spectroscopic study of multiferroic ErFe3(BO3)4. The energies of all eight Kramers doublets of the ground 4I15/2 multiplet of the Er3+ ion were determined by the high-resolution 4I13/2 → 4I15/2 infrared luminescence spectra. The spectroscopically determined temperature dependence of the splitting of the ground Kramers doublet was used to calculate the contribution of the erbium subsystem into the specific heat and the magnetic susceptibility of erbium iron borate. The analysis of the thermodynamic properties based on these calculations allowed us to suggest the domain structure in the easy-plane antiferromagnetically ordered iron subsystem, with two magnetically nonequivalent erbium positions in each domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.