Abstract

We have investigated magnetic order in superlattices of Dy and Sc grown along the hcp c axis by molecular beam epitaxy (MBE) techniques. Our neutron diffraction experiments reveal that individual Dy layers order ferromagnetically below Tc∼150 K. The magnetic coherence length along the growth direction is less than the Dy-layer thickness. Previous studies of rare-earth superlattices with Y or Lu as spacer layers have shown that magnetic coherence propagates through sufficiently thin nonmagnetic interlayers. This arises from the long-range exchange interaction that originates from nesting features in the Fermi surface of the spacer material. The lack of coupling in Dy/Sc superlattices reflects the very different Fermi surface of Sc, with much weaker nesting than Y and Lu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.