Abstract

KCrF(3) has been systematically investigated by using the full-potential linearized augmented plane wave plus local orbital method within the generalized gradient approximation and the local spin density approximation plus the on-site Coulomb repulsion approach. The total energies for ferromagnetic and three different antiferromagnetic configurations are calculated in the high-temperature tetragonal and low-temperature monoclinic phases, respectively. It reveals that the ground state is the A-type antiferromagnetic in both phases. Furthermore, the ground states of the two phases are found to be Mott-Hubbard insulators with the G-type orbital ordering pattern. In addition, our calculations show the staggered orbital ordering of the 3d(x(2) ) and 3d(y(2) ) orbitals for the tetragonal phase and the 3d(z(2) ) and 3d(x(2) ) orbitals for the monoclinic phase, which is in agreement with the available data. More importantly, the relationship between magnetic structure and orbital ordering as well as the origin of the orbital ordering are analyzed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.