Abstract

The ordered magnetic states of MnWO4 at low temperatures were examined by evaluating the spin exchange interactions between the Mn2+ ions of MnWO4 on the basis of first principles density functional calculations and by performing classical spin analysis with the resulting spin exchange parameters. Our work shows that the spin exchange interactions are frustrated within each zigzag chain of Mn2+ ions along the c-direction and between such chains of Mn2+ ions along the a-direction. This explains the occurrence of a spiral-spin order along the c- and a-directions in the incommensurate magnetic state AF2, and that of a uudd spin order along the c- and a-directions in the commensurate magnetic state AF1. The ferroelectric polarization of MnWO4 in the spiral-spin state AF2 was examined by performing Berry phase calculations for a model superstructure to find that the ferroelectric polarization occurs along the b-direction, in agreement with experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call