Abstract
We simulate plasma transport from the plasma sheet to the ring current, for the first time including the feedback effect of the drifting particles on both the electric and magnetic fields. Results suggest that strong, steady adiabatic convection throughout the middle plasma sheet leads to a highly stretched inner plasma sheet, but no ring current particle flux increases. We subsequently impose a substantial reduction of the specific entropy PV5/3 near midnight outside 10 RE, where P is particle pressure and V = ∫ds/B is flux tube volume. This produces a strong enhancement of the asymmetric ring current, which becomes symmetric when the pressure depletion and strong convection are quelled. We suggest that a reduction of the specific entropy in a region of the inner plasma sheet, apparently by some process that violates the assumption of adiabatic drift, plays a major role in the injection of a storm‐time ring current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.