Abstract
A detailed analysis of the membrane voltage rise commensurate with the electrical charging circuit of a typical magnetic stimulator is presented. The analysis shows how the membrane voltage is linked to the energy, reluctance, and resonant frequency of the electrical charging circuit. There is an optimum resonant frequency for any nerve membrane depending on its capacitive time constant. The analysis also shows why a larger membrane voltage will be registered on the second phase of a biphasic pulse excitation [1]. Typical constraints on three key quantities voltage, current, and silicone controlled rectifier (SCR) switching time dictate key components such as capacitance, inductance, and choice of turns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.