Abstract
High-Tc superconducting levitation systems, such as flywheels and linear-drives, have very small damping, because of their no contact support. Thus, they can show complicated phenomena of dynamics due to nonlinearity in their magnetic force or torque. In mechanical design of such systems, it is important to evaluate their nonlinear dynamics, though it has not been well studied so far. As one modeling of such an application system, we consider a magnetically coupled system of several permanent magnets and high-Tc superconducting bulks. It is a multi-degree-of-freedom dynamical system showing complicated motion caused by nonlinear interaction between levitated magnets and superconducting bulks. This research deals with magnetic stiffness of a coupled superconducting levitation system. As a fundamental dynamical property of the system, we evaluate the stiffness by doing experiment and analysis, and examine nonlinear effect on this property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.