Abstract
The effect of a magnetic spring is observed in electromechanical devices with limited pole sizes. Simultane-ous changing of the system magnetic conductivity after a relative displacement of the poles causes mag-netic tension forces. These forces in electromechanical magnetic fluid dampers have their own specific characteristics which have not been studied before. All this requires studying the effect of a magnetic spring on the damper power characteristics, estimating the effect of the properties of a magnetorheological suspension on the magnetic spring strength, nature of its change and combination of the action of magnetic forces and viscosity resistance to the piston movement. To do that, it is important to analyze the effect of a magnetic spring in statics, at a slow movement of the piston and its dynamic oscillations. The studies were based on the theory of natural experiment and methods of processing experimental results. We have obtained and analyzed dependences of the resistance force of the electromechanical magnetic fluid damper for different vibration frequencies and magnetic inductions. The effect of magnetic spring forces on the damper power characteristic has been investigated. It has been found how the damper resistance force is affected by the magnetic and hydrodynamic components. The use of a damper with alternating elements with high and low magnetic conductivities makes it possible to change the strength characteristic of electromechanical magnetic fluid dampers. The proportion of the force controlled by the magnetic field reaches 75 % of the total effort. The use of the magnetic spring effect allows increasing the damping efficiency at small amplitudes and vibration frequencies. Increasing the magnetic properties of a magnetorheological suspension enhances the effect of a magnetic spring if the piston is non-magnetic, and weakens it if it is a magnetic one. When the magnetic induction rises, the effect of the magnetic spring increases. By changing the initial piston position, it is possible to obtain an asymmetrical power characteristic, for example, without using valves and spools, to increase the rebound force and to reduce the compressive force. If there are no moving parts, the damper reliability increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.