Abstract
The magnetic dipole-dipole interaction between nanomagnets having huge magnetic moments can have a strength comparable to that of the van der Waals interaction between them, and it can be manipulated by applying an external magnetic field of conventional strength. Therefore, the cooperation between the dipole-dipole interaction and the applied magnetic field allows the magnetic moments of nanomagnets to be aligned and organized in an ordered manner. In this work, a network of magnetic nanoparticles connected with flexible long-alkyl-chain linkers was designed to develop a "magnetic sponge" capable of absorbing and desorbing guest molecules with changes in the applied magnetic field. The magnetization of the sponge with long-alkyl-chain bridges (30 C atoms) exhibited a 500% increase after cooling in the presence of an applied field of 7 T relative to that in the absence of a magnetic field. Cooling in a magnetic field leads to anisotropic stretching in the sponge due to reorganization of the nanomagnets along the applied field, in contrast to the isotropic organization under zero-field conditions. Such magnetic-responsive organization and reorganization of the magnetic particle network significantly influences the gas absorption capacity of the nanopores inside the material. The absorption and desorption of guests in an applied magnetic field at low temperature can be regarded as a fascinating "breathing feature" of our magnetic sponge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.