Abstract

Object. The purpose of this study was to determine if magnetic source (MS) imaging could provide useful information in the planning and performance of gamma knife radiosurgery (GKS) for epilepsy. Methods. Magnetic source imaging of interictal epileptiform dipoles was studied in 53 epilepsy surgery candidates. All patients underwent volumetric magnetic resonance (MR) imaging. Subsequently, magnetoencephalography (MEG) was performed using single or dual 37—channel units. The MR images and MEG recordings were then coregistered to produce the MS imaging data. Magnetic source imaging epileptiform data were reviewed in a blinded fashion and spatial distributions were classified as focal, regional, multiple, scattered, or none. Postresection operative photographs were compared with MS image results to determine whether extensive or partial/no resection of the MS image focus had been accomplished. Magnetoencephalography dipoles were identified in 47 patients (89%), in 46 of whom the lesions were resected. This included 20 (80%) of 25 anterior temporal lobe (ATL) cases, and 26 (93%) of 28 extratemporal lobe (ETL) cases. Of the six patients who underwent extensive ATL resections, three (50%) were seizure free. Of 14 patients who underwent partial/no resection of the ATL, seven (50%) were seizure free. There was no clear relation between MS image spatial distribution and surgery-related outcome. Of the seven ATL cases with hippocampal atrophy, five patients (71%) were seizure free. Of 12 ETL cases (three lesional), 10 patients (83%) were seizure free. Of 14 patients who underwent partial/no ETL resections (three lesional), two (14%) were seizure free. Of five nonlesional ETL cases with focal MS image dipoles, four patients (80%) were seizure free. Of five nonlesional ETL cases with regional dipoles, three patients (60%) were seizure free. Of eight ETL cases with multiple MS image dipoles, two patients (25%) were seizure free. Spatial agreement of MS imaging and electrographic data had no apparent effect on outcome of either ATL or ETL cases. Conclusions. Nonlesional ETL cases with focal (and in some cases multiple or regional) epileptiform MS image dipole distributions benefit significantly from inclusion of the MS image epileptiform focus in the resections. Nonlesional ETL cases suitable for GKS may similarly benefit from including the MS image focus in the irradiated area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.