Abstract

In this study, magnetic carbon nanofibers (Fe3O4@CNF) were modified with MIL-101(Cr) (Fe3O4@CNF@MIL-101) and used as sorbents for magnetic solid-phase extraction (MSPE) to extract polycyclic aromatic hydrocarbons (PAHs) from real water samples. Gas chromatography coupled with a flame ionization detector (GC-FID) was used for the determination of the PAHs. The effect of experimental variables on the extraction efficiency of PAHs was investigated and optimized. These variables include the quantity of sorbent, the kind and volume of the elution solvent, the duration of extraction and desorption, and the salt concentration. The linear range was found to be 0.01 to 200 ng mL-1 with correlation coefficients ranging from 0.9906 to 0.9931 after the effective extraction parameters were optimized. Its detection limits (LOD) were also calculated to be between 0.003 and 0.005 ng mL-1 (S/N = 3). The method's repeatability was tested at three different concentration levels (0.1, 1, and 10 ng mL-1), and relative standard deviations (RSDs%) were obtained in the range of 2.3 to 5.0%. Finally, using the MSPE-GC-FID method, PAHs were extracted from tap water, wastewater, seawater, and spring water samples. The relative recoveries were in the range of 95.7 to 99.8%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call