Abstract

A novel magnetic metal-organic frameworks (Fe3O4@UiO-66-SH) was successfully prepared by coating Fe3O4 nanospheres with sulfur-functionalized UiO-66. The Fe3O4@UiO-66-SH possesses both the magnetic properties of Fe3O4 and the diverse properties of metal-organic framework (MOF) in one material, which has the superiority of high surface area, easy-operation and strong adsorb ability with mercury, is used for the magnetic solid-phase extraction of methylmercury (MeHg+) and inorganic mercury (Hg2+) in water and fish samples. The analyzes were conducted by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The different pretreatment conditions influencing the extraction recoveries of Hg2+ and MeHg+, including adsorbent amount, pH, extraction time, elution solvent, elution volume, desorption time, co-existing ions and dissolved organic materials were investigated. Under the optimized conditions, the limits of detection (LODs) of Hg2+ and MeHg+ for water samples were 1.4 and 2.6 ng L−1, and the limits of quantification (LOQs) of Hg2+ and MeHg+ for water samples were 4.7 and 8.7 ng L−1. The enrichment factors (EFs) were 45.7 and 47.6 fold for Hg2+ and MeHg+, respectively. The accuracy of the proposed method was demonstrated by analyzing the certified reference material of fish tissue (GBW10029) and by determining the analyte content in spiked water and fish samples. The determined values were in good agreement with the certified values and the recoveries for the spiked samples were in the range of 84.5–96.8%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call