Abstract

In this work, surfactant-coated Fe3O4@decanoic acid nanoparticles was synthesized as a viable nanosorbent for coextraction of drugs with different polarities (hydrophobic, hydrophilic). To reach desirable enrichment factors, efficient clean-up and low limits of detection (LODs), the method was combined with dispersive liquid–liquid microextraction (DLLME). The coupling of these extraction methods with GC-FID detection was applied to simultaneous extraction and quantification of venlafaxine (VLF) as a hydrophilic model drug and desipramine (DESI) and clomipramine (CLO) as hydrophobic model drugs in urine samples. The effect of sample pH, nanosorbent amount, sorption time, surfactant concentration, eluent type, eluent volume, salt content, elution time in magnetic solid phase extraction step and extraction solvent and its volume along with sample pH in DLLME step were optimized. Under the selected conditions, linearity was achieved within the range of 5–5000 µg L−1. The LOD values were obtained in the range of 1.5–3.0 µg L−1 for DESI, 1.2–2.5 µg L−1 for VLF and 2.0–4.0 µg L−1 for CLO, respectively. The percent of extraction recoveries and relative standard deviations (n = 5) were in the range of 82.4–95.9 and 6.1 for DESI, 60.5–92.8 and 6.9 for VLF and 57.2–58.0 and 5.5 for CLO, respectively. Ultimately, the applicability of the new method was successfully confirmed by the extraction and quantification of DESI, VLF and CLO from human urine samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.