Abstract
A magnetic graphene oxide (GO/Fe3O4) nanocomposite was synthesized in one step by a chemical coprecipitation method, which was further used for magnetic solid-phase extraction (MSPE). This study aimed to combine GO/Fe3O4 with ultra-high-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) to detect the nitroimidazoles (NDZs) and their three major metabolites in honey samples. GO/Fe3O4 was characterized by transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR) spectroscopy, and magnetic property measurement system (MPMS), and the influencing parameters such as adsorbent amount, pH of the dissolved sample solution, sample volume, type and volume of the eluent, shaking speed, and adsorption and desorption time were optimized. Under the optimized conditions, the limits of detection (LOD) and quantitation (LOQ) of the method were 0.003–0.08 μg kg−1 and 0.009–0.3 μg kg−1, respectively, with good linearity reported in the range of 0.5–20 μg kg−1 (R2 ≥ 0.9991). The average recoveries of 10 analytes were in the range of 66.0%–90.8% with relative standard deviations (RSD) lower than 6.9% (n = 6). The preparation of GO/Fe3O4 and the extraction process were convenient and rapid, and consumed small amounts of organic solvents. The optimized method was successfully applied for extracting NDZs and their three major metabolites from honey samples with good accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.