Abstract

Skyrmion helicity, which defines the spin swirling direction, is a fundamental parameter that may be utilized to encode data bits in future memory devices. Generally, in centrosymmetric ferromagnets, dipole skyrmions with helicity of -π/2 and π/2 are degenerate in energy, leading to equal populations of both helicities. On the other hand, in chiral materials where the Dzyaloshinskii-Moriya interaction (DMI) prevails and the dipolar interaction is negligible, only a preferred helicity is selected by the type of DMI. However, whether there is a rigid boundary between these two regimes remains an open question. Herein, the observation of dipole skyrmions with unconventional helicity polarization in a van der Waals ferromagnet, Fe5- δ GeTe2 , is reported. Combining magnetometry, Lorentz transmission electron microscopy, electrical transport measurements, and micromagnetic simulations, the short-range superstructures in Fe5- δ GeTe2 resulting in a localized DMI contribution, which breaks the degeneracy of the opposite helicities and leads to the helicity polarization, is demonstrated. Therefore, the helicity feature in Fe5- δ GeTe2 is controlled by both the dipolar interaction and DMI that the former leads to Bloch-type skyrmions with helicity of ±π/2 whereas the latter breaks the helicity degeneracy. This work provides new insights into the skyrmion topology in van der Waals materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call