Abstract

We study a two-dimensional electron gas exchange coupled to a system of classical magnetic ions. For large Rashba spin-orbit coupling, a single electron can become self-trapped in a skyrmion spin texture self-induced in the magnetic ions system. This new quasiparticle carries electrical and topological charge as well as a large spin, and we named it as magnetic skyrmionic polaron. We study a range of parameters; temperature, exchange coupling, Rashba coupling, and magnetic field, for which the magnetic skyrmionic polaron is the fundamental state in the system. The dynamics of this quasiparticle is studied using the collective coordinate approximation, and we obtain that in the presence of an electric field the new quasiparticle shows, due to the chirality of the skyrmion, a Hall effect. Finally, we argue that the magnetic skyrmionic polarons can be found in large Rashba spin-orbit coupling semiconductors as GeMnTe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call