Abstract

The search for materials that exhibit topologically protected spin configurations, such as magnetic skyrmions, continues to be fueled by the promise of outstanding candidate components for spin-based applications. In this study, in situ Lorentz transmission electron microscopy directly images Bloch-type magnetic skyrmionic bubbles in a layered ferromagnet Cr0.87Te single crystal. Owing to the competition between a magnetic dipole interaction and uniaxial easy axis anisotropy, nanoscale magnetic bubbles with random chirality can be observed in a wide temperature range covering room temperature when the external magnetic field is applied along the out-of-plane direction. Moreover, high-density and stable skyrmionic bubbles are successfully realized at zero magnetic field by appropriate field-cooling manipulation. Additionally, a sign reversal of the Hall effect and the derived topological Hall effect is observed and discussed. As quasi-two-dimensional materials, the binary chromium tellurides hosting magnetic skyrmions could have many applications in low-dimensional skyrmion-based spintronic devices in an ambient atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.