Abstract

Ships can avoid to be detected by magnetic mines by reducing their magnetic signature with degaussing coils. Degaussing currents are provided by switched mode power supplies which impose a current ripple on top of the degaussing current. The ripple might be visible in the magnetic signature which would increase the detectability of the ship. A way to reduce the ripple in the magnetic field is to use a switching modulation scheme in the degaussing power supplies. In this paper, a magnetic model of a ship with degaussing coils is described. It is used to find the magnitude of the ripple in the magnetic signature. Also the effect of reducing the current ripple by frequency modulation is investigated. Several modulation schemes are modelled. It is found that the ripple in the magnetic signature is often, but not always, negligible due to attenuation by the ship’s hull. For low frequency switching applications, like high temperature superconductor degaussing systems, the ripple is visible in the magnetic signature. It is found that switching frequency modulation is a very effective technique to reduce the ripple of degaussing currents. Of the tested schemes, random lead lag and random switching frequency are the most effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.