Abstract

The tidal flow of seawater across the Earth's magnetic field induces electric currents and magnetic fields within the ocean and solid Earth. The amplitude and phase of the induced fields depend on the electrical properties of both seawater and the solid Earth, and thus can be used as proxies to study the seabed properties or potentially for monitoring long-term trends in the global ocean climatology. This article presents new global oceanic tidal magnetic field models and their uncertainties for four tidal constituents, including [Formula: see text] and even [Formula: see text], which was not reliably retrieved previously. Models are obtained through a robust least-squares analysis of magnetic field observations from the Swarm and CHAMP satellites using a specially designed data selection scheme. We compare the retrieved magnetic signals with several alternative models reported in the literature. Additionally, we validate them using a series of high-resolution global three-dimensional (3D) electromagnetic simulations and place constraints on the conductivity of the sub-oceanic mantle for all tidal constituents, revealing an excellent agreement between all tidal constituents and the oceanic upper mantle structure.This article is part of the theme issue 'Magnetometric remote sensing of Earth and planetary oceans'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.