Abstract

As in the case of the solar wind, the magnetic field in the wind from a magnetized, rotating star becomes increasingly toroidal with distance from the star. The strength of the magnetic field can be characterized by sigma, the ratio of toroidal magnetic energy density to kinetic energy density in the equatorial plane of the wind. A fast wind shocks against the external medium and creates a bubble whose volume is dominated by shocked gas. The toroidal magnetic field increases in the shocked bubble and can dominate the thermal pressure. Because of the low velocities in the bubble, hydrostatic equilibrium is a good approximation and allows the calculation of the thermal and magnetic pressure in the bubble, as in the model of Begelman and Li (1992) for the Crab Nebula. The structure, which is axisymmetric and extended in the polar direction, depends on two parameters: sigma nu(sub w)/w(sub 0), where nu(sub w) is the wind velocity and w(sub 0) is the shell velocity in the polar direction, and lambda = nu(sub a)/w(sub 0), where nu(sub a) is the velocity of the slow wind. For small values of lambda, there is a cusp in the shell in the equatorial plane, i.e., there is an equatorial ring. For larger values of lambda, the maximum of the surface density moves away from the equator i.e., a double ring structure. Our models should apply to planetary nebulae, if their central stars are sufficiently magnetized; the calculated shapes do resemble the observed shapes of planetaries. In all cases, our model predicts that X-ray emission from the bubble is concentrated toward the polar axis. Finally, we briefly discuss the asymmetry of the Crab Nebula and 3C 58.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.