Abstract

We designed an improved apparatus to separate and identify volatile solid particles at temperatures around 200 K using short-duration microgravity. Separation is based on the difference in diamagnetism of the mixed particles released in a region of monotonically decreasing magnetic field. The velocity of the translating particles in the microgravity region is considerably enhanced, which yields improved accuracy in measurement of the terminal velocity of the particles outside the magnetic field region. We achieved separation of a mixture of heterogeneous particles, including solid CO2, with high resolution. A particle's composition can be estimated from the value of magnetic susceptibility obtained from the terminal velocity because the particle's acceleration induced by the magnetic volume force is independent of particle mass. It is expected that material abundances of heterogeneous, volatile, solid particles, such as hexagonal ice, dry ice, ethane, methane, and CO, can be determined in this simple manner in cold regions on Earth and in the outer regions of the solar system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.