Abstract

We report the generation of spin squeezing and entanglement in a magnetically sensitive atomic ensemble, and entanglement-enhanced field measurements with this system. A maximal m(f) = ± 1 Raman coherence is prepared in an ensemble of 8.5 × 10(5) laser-cooled (87)Rb atoms in the f = 1 hyperfine ground state, and the collective spin is squeezed by synthesized optical quantum nondemolition measurement. This prepares a state with large spin alignment and noise below the projection-noise level in a mixed alignment-orientation variable. 3.2 dB of noise reduction is observed and 2.0 dB of squeezing by the Wineland criterion, implying both entanglement and metrological advantage. Enhanced sensitivity is demonstrated in field measurements using alignment-to-orientation conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.