Abstract

Methylene blue (MB) removal from dyeing wastewater using low-cost bio-derived adsorbent is a significant and challenging field. Herein, magnetic sugar hydrochar (MGHC) precursors derived from sugar-rich wastewater with small particle size and rich oxygen-containing functional groups (OCFGs) are prepared from sugar-rich aqueous solution via Fe salt-modified hydrothermal procedure. The role of Fe3O4 nanoparticles formed during the sugar carbonization is to provide numerous magnetic seeds to generate MGHC with core-shell structure, which reduces the particle size of hydrochar. This increases the amount of OCFGs on the surface of MGHC for bonding the sulfonic acid groups. Therefore, sulfonic acid-modified MGHC-SA shows the rapid MB adsorption rate and excellent adsorption capacity. The highest MB capacity is 869.6mg/g at pH = 11.0 and 298K. Additionally, the MGHC-SA can be easily recovery by magnet. And the stability of MGHC-SA was also evaluated, no degradation of adsorption performance was observed, even the adsorbent was regenerated 10 times. This study puts forward a promising way to acquire functional groups rich and easy recovery hydrochar from sugar wastewater for MB removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call