Abstract
Two-dimensional (2D) nonmagnetic second-order topological insulators (SOTIs) have been exhaustively studied, whereas 2D magnetic SOTIs have received little attention from researchers. In this work, we have demonstrated using first-principles calculations that the 2D NiZrI6 monolayer is a 2D magnetic SOTI with a ferromagnetic ground state. Two spin channels in the 2D NiZrI6 monolayer exhibit nontrivial gaps. According to the higher-order bulk-boundary correspondence, the 2D NiZrI6 monolayer shows topologically protected corner states with quantized fractional charge (e/3) that are spin-polarized and pinned at the sample's corners in real space. In addition, the zero-dimensional corner states of the 2D NiZrI6 monolayer are resistant to spin–orbit coupling (SOC) effects. It is anticipated that 2D NiZrI6 monolayer with magnetic higher-order topology will contribute to topo-spintronics advancement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.